In today’s world, it’s not uncommon for companies to be rich in data but poor in insights. Despite having access to a wealth of information, organizations struggle to properly analyze performance and drive transformational improvements. This is where ThingWorx Digital Performance Management (DPM) steps in to bridge the gap.
This week in your factory, you’ve applied maximum effort, pouring countless hours into perfecting your product. As the work week ends, a feeling of slight disappointment remains.
Could you have accomplished more? Where did it go awry? You may not be able to find the answers on your own, leaving your factory inefficient and operating below its full potential.
If this is you, look no further. With the capabilities of Thingworx Digital Performance Management, you will unleash an untapped potential of data and boost your manufacturing processes.
What is Digital Performance Management?
ThingWorx Digital Performance Management (DPM) is a cutting-edge solution designed to help organizations identify, prioritize, and improve production issues.
By capturing lost production hours and their causes, DPM indicates where to focus for the most critical impact. Also, it optimizes the finite time available, allowing organizations to reclaim lost hours and increase effective time by 20% or more. Thus, directly impacting the bottom line.
How Does DPM Work?
Consider a manufacturing facility that can produce one unit per hour. In a week with 88 hours worked, the facility manages to manufacture only 44 units. Let’s say 12 hours are lost through planned downtime and 14 hours are lost due to changeovers.
That leaves about 18 hours unaccounted for. Where did those come from? With ThingWorx DPM, you can quickly identify issues, and why they happened, and then take appropriate actions to fix them.
Moreover, DPM calculates and analyzes discrepancies, providing valuable insights to improve productivity. DPM is a comprehensive toolset that propels organizations towards peak performance by tracking performance, conducting in-depth analysis, planning, and validating improvements.
The Production Dashboard
One feature included with DPM is the Production Dashboard. The visual dashboard is a crucial tool for supervising shift performance and gathering vital data to inform reporting and analysis. It is designed for supervisors and line managers to track productivity across various production lines.
Some key features of the Production Dashboard include:
Provides insights into shift progress at the production block level
Allows for automated and manual data entry, including reason codes to capture all losses
And offers a simplified interface to minimize disruption
Bottleneck Analysis
The Bottleneck Analysis tool is designed to automatically detect and monitor the most significant bottlenecks in your factory, providing valuable analysis and insights into OEE and OLE.
One of the challenges that customers face is a lack of visibility into bottlenecks, which leads to a disconnect between continuous improvement efforts and their impact on the business. However, bottlenecks are often dynamic and complex.
To address these challenges, DPM offers key capabilities to help identify and resolve:
Automatically identifying and tracking bottlenecks.
Systematic identification of the top constraints, which can significantly increase factory efficiency by 5-20%.
Management of the dynamic nature of competing bottlenecks.
Overall, DPM works relentlessly, making up for lost time by tracing the root cause of issues and providing precise remedies to ensure smooth and efficient functionality. Consider DPM an invaluable employee, working tirelessly around the clock without additional overtime costs!
Accelerate Problem Solving with DPM
DPM’s capabilities extend beyond surface-level analysis. By combining Pareto analysis and time loss analytics, DPM users can uncover and address a significant percentage of production problems.
Additionally, with the further integration of AI and machine learning, DPM streamlines the identification of patterns in data, resulting in faster problem-solving and decision-making.
For instance, a DPM user noticed quality losses between 3 p.m. and 4 p.m. Thanks to DPM’s automated analysis, the manufacturing team quickly determined that the issue was caused by a glare from the sunset, making the inspection camera unreliable.
All in all, DPM helped accelerate the problem-solving process saving valuable time and resources.
Reap the Benefits
Digital Performance Management is as remarkable as it sounds. DPM holds the secret to your production improvements and is ready to share them with you. Discover the plethora of benefits that are tied to DPM:
Standardized Measurement: DPM provides a consistent and standardized approach to measure losses, ensuring accurate evaluation of bottlenecks, and their impact on performance.
Efficient Root Cause Analysis: Leveraging AI technology, DPM identifies the root causes of bottlenecks and facilitates their permanent resolution, eliminating recurring issues.
Automated Problem Identification: DPM’s powerful AI algorithms automate the process of surfacing common issues, exponentially reducing the time spent on problem-solving.
Real-time Insights: What once took months to identify critical insights now becomes easily accessible through DPM’s intuitive interface, providing teams with immediate access to actionable insights.
Get Started with DPM Today!
In conclusion, if you want to revolutionize your performance management and take your organization to new heights, it’s time to embrace Digital Performance Management.
Remember, in today’s fast-paced world, those who leverage technology to gain insights and make data-driven decisions are the ones who thrive.
Are you ready to unlock the true potential of your organization with Digital Performance Management? Talk with an expert now to take your first steps toward success.
I’m sure at least once in your life you’ve heard the saying, ‘Work smarter, not harder.’ But what a cliche, right?! Well, for those of you managing your Bill of Materials (BOMs) in Excel, it’s time to step away from the cell block prison (pun intended).
In this article, we’re going to break down what it actually means to revitalize your BOM strategy with the Digital Thread to start seeing the results you want.
What Is The Digital Thread?
First of all, let’s start with the basics. The Digital Thread is a term used to describe the seamless flow of information throughout the manufacturing process. From design and engineering to production and after-sales support. It provides a way to connect all the data and information generated at different stages and from systems of the product lifecycle.
Generally, the Digital Thread provides value by enabling better visibility and control of any processes that require or produce product data. It enables manufacturers to collaborate more effectively, automate and optimize workflows, and quickly respond to changes. All while adjusting quickly to customer needs.
Bill of Materials (BOM)
Next, let’s break down the concept of a Bill of Materials. A complete Bill of Materials (BoM) list usually contains all of the parts and components needed to create or manufacture an end product. You might think of a BoM as a recipe ingredient list. The information about each part can include details such as part names, part numbers, quantity required, and cost per unit. Not to mention, BoMs contain other relevant part details such as material type, color, or size if applicable; supplier information; serial numbers, etc.
By consolidating and organizing all the pertinent information product information, the BoM becomes a centralized resource. A critical resource that facilitates the manufacturing processes of specified products.
Ultimately, the goal of the BoM is to help track inventory and verify missing parts during assembly. Equally as important, BoMs are critical to support a healthy supply chain, as well as help with purchasing decisions and more.
The Digital Thread and Bill of Materials Working Together
Balancing a plethora of product information – it’s no surprise, the best BoM management strategy used within the industry does not leverage solely Microsoft Excel. Nor does it rely upon one Enterprise resource planning (ERP) system. Instead it works to unite data from multiple systems into a single source of truth.
Sounds great doesn’t it? But, if you’re like most – your product data lives all over the place in different systems from different departments. This situation tends to create data siloes resulting in time-consuming manual tasks using outdated operational processes. Generally, these are some of the biggest problems that inhibit manufacturers from achieving their business initiatives.
Oftentimes, during our EAC Assessments, we hear multiple teams across the enterprise and different management levels are frustrated by broken processes. In short, there is a lack of key information employees need to do their jobs right, at the time they need it most.
Meanwhile, the digital thread uses advanced technology (such as product lifecycle management systems as well as the Internet of Things) to connect critical disparate processes. This, in turn, helps minimize manual tasks, and breaks down data siloes. Implementing the digital thread to your BoM strategy creates a major impact for all stakeholders involved. For instance, design teams, engineers, manufacturing, assembly, operations, finance, purchasing, and even marketing.
How The Digital Thread Supports Engineering
Furthermore, the Digital Thread plays a crucial role in supporting engineering and bill of materials (BOM) management by providing seamless connectivity and accessibility to relevant data throughout the product lifecycle. Here’s how the digital thread benefits these areas:
1. Engineering Collaboration
Firstly, the digital thread allows engineers to collaborate effectively by providing a centralized platform for sharing and accessing engineering data. This facilitates cross-functional collaboration, enables real-time communication, and reduces errors or miscommunications during the design and development process.
2. Design Consistency
Secondly, the digital thread ensures design consistency by maintaining a single source of truth for engineering data. Changes made in the design phase are automatically propagated throughout the digital thread, ensuring that all related documents, models, and specifications remain synchronized.
3. BOM Accuracy and Visibility
The digital thread integrates BOM management, configuration management, and BoM transformation capabilities. This enables accurate and up-to-date BOMs, as the data will automatically reflect changes. Additionally, it provides real-time visibility into the BoM status, including component availability, sourcing information, and cost implications.
4. Change Management
Next, the digital thread streamlines change management processes. By automating change notifications, approvals, and tracking. Essentially, it ensures that engineering changes are effectively communicated, documented, and implemented across the relevant stages of the product lifecycle, minimizing errors and delays.
5. Manufacturing Process Optimization
By connecting engineering data with manufacturing process management, the digital thread enables better coordination and optimization of production processes. By in large, system and data integration allows for improved manufacturing planning, efficient resource allocation, and reduced lead times.
6. Enhanced Visualization and Analysis
Another example includes leveraging augmented reality (AR) design sharing to provide visual representations of designs. In detail, enabling stakeholders to view and analyze products in a virtual environment. It’s recommended to use AR to enhance design reviews, simplify communication, and facilitate better decision-making.
Overall, the digital thread improves engineering and BoM management. Markedly, by streamlining processes, enhancing collaboration, ensuring data consistency, and providing visibility across the product lifecycle. It promotes efficiency, accuracy, and agility in engineering and BoM-related activities. Leading to improved product quality and faster time to market in the long run.
How A Digital Thread BoM Strategy Streamlines Manufacturing
Simultaneously, the digital thread plays a significant role in enhancing the bill of materials (BoM) management for manufacturing, assembly, and quality control processes. In sum, here’s how the digital thread benefits these areas:
1. Manufacturing and Assembly Planning
The digital thread enables seamless integration between the BoM and manufacturing planning systems. It provides real-time visibility into the BoM, ensuring accurate and up-to-date information for manufacturing and assembly operations. This allows for efficient production planning, optimized resource allocation, and improved scheduling in all.
2. Supply Chain Integration
By connecting the BoM with supply chain management systems, the digital thread enhances supply chain visibility and collaboration. It enables better coordination with suppliers, accurate tracking of component availability, and improved procurement processes. As a result, it minimizes the risk of production delays and ensures timely delivery of materials.
3. Work Instructions and Assembly Guidance
Thirdly, the digital thread facilitates the creation and dissemination of detailed work instructions and assembly guidance based on the BoM data. This ensures that assembly operators have access to accurate and step-by-step instructions, reducing errors and improving productivity on the shop floor.
4. Quality Control and Traceability
The digital thread enables better quality control and traceability throughout the manufacturing process. By integrating the BoM with quality management systems, it ensures that quality requirements and specifications are adhered to during production. It also enables traceability of components and materials, making it easier to identify and address any quality issues or recalls.
5. Continuous Improvement and Feedback Loop
Additionally, the digital thread supports continuous improvement initiatives by capturing data and feedback from manufacturing and quality control processes. It enables the analysis of production data, identifies areas for improvement, and facilitates data-driven decision-making to enhance manufacturing efficiency and product quality.
6. Post-Market Monitoring
Finally, the digital thread extends beyond the manufacturing phase to support post-market monitoring and quality assurance. Integrating BoM data with field service management systems and customer feedback enables organizations to identify and address product issues, initiate product improvements, and provide timely support and maintenance.
All in all, the digital thread enhances BoM management for manufacturing and assembly processes by ensuring accurate and up-to-date information, facilitating supply chain integration, enabling effective work instructions, improving quality control, supporting continuous improvement efforts, and enabling post-market monitoring. Concurrently, it streamlines operations, improves product quality, and enhances customer satisfaction.
The Polaris Story
Polaris utilized PTC Windchill, an advanced product lifecycle management system, to transform their Bill of Materials into a reliable new business model backbone. As a result, it allowed them to create a connected enterprise.
Windchill PLM combines the digital thread framework with a maximized BoM and change management strategy. This powerful product lifecycle management platform organizes all information associated with the development of its products, allowing every stakeholder to access the latest up-to-date information in a dynamic format.
Once it was clear to Polaris that they had outgrown certain tools and processes, they coordinated and synchronized a digital thread of data throughout the enterprise by leveraging PTC Windchill.
As of today, Polaris’ Windchill PLM system enables them to manage and organize the bill of materials (BoM) and implemented configuration management practices. This helped transform their BoMs as needed, effectively managing changes, overseeing manufacturing processes, and utilizing augmented reality (AR) design-sharing capabilities.
By orchestrating these elements, the digital thread ensured seamless connectivity and flow of information across different stages and departments within Polaris. This enabled improved collaboration, streamlined workflows, effective change control, and enhanced manufacturing processes. On top of giving the ability to share and visualize designs using AR technology.
Conclusion
To sum it up, it’s time to put Excel away and start working smarter, not harder. Successful BoM management derives from a single source of truth throughout the enterprise in regard to all the data contained in the Bill of Materials. The Digital Thread allows for the seamless automated flow of the BoM information to create a truly connected enterprise, working in sync along every step of the manufacturing process.
Not sure where to get started? We created our EAC Assessments to help. Click here to learn more or have a conversation with our experts.
Attention engineers! There’s an easier way to conduct Tolerance Analysis for your CAD designs.
Transforming CAD designs into real and tangible parts is not only rewarding on a personal level but also professionally fulfilling. It combines creativity, problem-solving, and hands-on experience, all culminating in the sense of accomplishment that comes from creating something real from an abstract concept.
However, as you already know, physical parts deviate from the idealized representation (the design model) due to many different challenges and manufacturing constraints. Tolerance analysis involves assessing the impact of variations in dimensions, geometries, and other parameters on the final product’s performance and functionality. By utilizing Tolerance Analysis, designers ensure proper fit and alignment of the product components.
Improve Quality & Design Innovation
If the goal is to improve quality and design innovation, enable your engineers to perform comprehensive tolerance stack-up analysis. Traditionally this process is a massive pain i.e. repetitive trial-and-error tasks and tedious testing. This part of the design process can be frustrating and often slows down design teams. However, it doesn’t have to be this way!
The PTC Creo EZ Tolerance Analysis Extension is a dynamic computer-aided engineering (CAE) tool powered by leading Sigmetrix technology. This extension helps designers by creating a faster, more intuitive workflow to assess the impact of dimensional specifications on your product designs before prototypes or production.
The software provides algorithms to help engineers identify the optimal tolerance values that meet the design objectives while considering various constraints. This aids in making informed decisions and reducing the time spent on manual analysis and evaluations.
By considering these variations even earlier in the design process, engineers can make more informed decisions to ensure that the final product will perform as intended. Cheers to reinforcing Closed Loop Manufacturing!
The Positive Business Outcomes of Using EZ Tolerance Analysis
Below is a high-level overview of the positive business outcomes this PTC solution proves to provide for manufacturing companies:
- Speed time to market
- Mitigate risk
- Improve productivity
- Reduce costs by reducing rework and scrap
How EZ Tolerance Analysis Makes Your Workflow Less Stressful
Intuitive User Interface
Achieve your goals efficiently with minimal frustration. The EZ Tolerance Analysis extension’s user-friendly UI enables you to maintain a flow and continue work without disruptions as it is integrated into the familiar Creo environment. This mitigates any steep learning curve and helps with productivity to get new users up and running quickly and confidently. If you need help getting set up with the technology, give us a shout. We can help maximize your workforce capabilities and your technology investment.
Complexity Management
The EZ Tolerance Analysis software provides tools and features to manage complex designs efficiently. It offers intuitive interfaces and workflows that simplify processes regarding defining tolerance features. The extension extracts relevant information directly from your CAD models, reducing manual effort and potential errors. Visual dashboards: say goodbye to tedious spreadsheets.
Problem Identification and Resolution
No more flying blind, EZ Tolerance Analysis provides visualizations and statistical outputs that enable engineers to identify potential issues and bottlenecks in the assembly or system. After pinpointing problematic areas, engineers can devise effective solutions – such as adjusting tolerances, redesigning components, or modifying manufacturing processes.
Quick Iterative Design Refinement
Perform your “what-if” scenarios quickly and accurately. Using Sigmetrix technology, get immediate feedback on the effects of tolerance adjustments and trade-off analysis. Engineers can quickly refine and optimize tolerances based on the analysis results, reducing the time required for iterations.
Improved Collaboration
The software facilitates collaboration among multidisciplinary teams involved in the design and manufacturing process. Easily share tolerance analysis data, models, and reports via HTML reports to ensure everyone comprehensively understands design intent and can make informed decisions. Visual and data-backed reports can be shared with the shop floor, suppliers, or other stakeholders, facilitating effective communication and collaboration. Providing clear documentation helps to minimize misunderstandings and costly mistakes, saving time and effort in the design and manufacturing process.
Standards and Specifications Compliance
Ensure compliance with built-in libraries of industry standards and specifications. Engineers can access these libraries to ensure that defined tolerances comply with the relevant standards. Ensure compliance with ASME and ISO standards for your designs and create products that align precisely with customer requirements while operating within acceptable tolerances. This feature helps streamline the process of defining tolerance features by providing pre-defined templates and guidelines that match industry requirements.
Overall, EZ Tolerance Analysis empowers engineers to make data-driven decisions, reduce uncertainty, and enhance the efficiency and quality of the design and manufacturing process. It aids in achieving design objectives, meeting customer requirements, and delivering reliable and cost-effective products.
Back-Up Your cad Designs with Stack-Up Analysis
The technology performs comprehensive tolerance stack-up analysis by applying two methods for increased accuracy and precision- worst-case analysis and statistical analysis.
Worst-Case Analysis: Worst-case analysis, commonly employed for critical components, examines the scenario where each component in the stack-up attains its maximum acceptable measurement.
Statistical Analysis: On the other hand, statistical analysis utilizes statistical distribution models to represent the variation of each component. These distributions are then combined to predict the overall distribution of the assembly measurement.
Related Technologies To Use With Tolerance Analysis
Combine Tolerance Analysis with Geometric Dimensioning and Tolerancing (GD&T) to ensure your designs comply with ASME and ISO standards. Or take your designs even further to contain all the data needed to define the product with model-based definition (MBD). With MBD, your model becomes the source authority across the enterprise. The outcome is shorter product development cycles, reduced costs, and enhanced product quality.
PTC continues its investments in enhancing simulation-driven design and generative design with the new Creo 10. Some new features include Rotational Symmetry, Mass Point Constraints, and Remote Loads. Additionally, Creo Simulation Live now includes Contact Simulation options and improved options for fluid and structural results. Creo Flow Analysis and Creo Simulation now have better animation and multibody support.
For more Simulation and Analysis, we also recommend PTC’s Creo Simulation Advanced powered by Ansys technology. The brand-new Creo Ansys Simulation Advanced analyzes nonlinear contact and materials, with combined thermal and structural analysis. For more information about the latest release of Creo 10 check out the blog here.
PTC Creo: Explained
PTC Creo is a powerful 3D modeling and simulation software that helps engineers and designers to create virtual prototypes of their products. The software is used in many industries, such as aerospace, automotive, medical devices, consumer electronics and more.
PTC Creo provides users with a wide range of features including:
Modeling capabilities for creating complex shapes using parametric geometry or direct modeling tools
Test your designs before they’re manufactured
An integrated environment where you can work on multiple projects simultaneously without having to switch between different programs
The Benefits of PTC Creo
This powerful 3D CAD software offers advanced tools for product development, including:
Cost-effectiveness – The ability to create high quality products at lower costs through an improved design process. This effective simulation tool saves you money on
Improved accuracy – The ability to create accurate designs faster with less manual intervention.
Speed of design – A streamlined workflow enables you to quickly move from concept to reality by automating repetitive tasks so you can focus on what matters most – your ideas!
Creo Parametric
One of the key features of PTC Creo is its parametric design capabilities. This means that users can create models that are based on a set of parameters, such as dimensions or material properties. If any of these parameters change, the model will automatically update to reflect the new values. This can save a lot of time and effort in the design process, as designers don’t have to manually update every aspect of the model.
Creo Simulation
PTC Creo also includes a range of simulation tools using Creo Simulate or Simulate Live, which allow designers to test their models under various conditions. For example, they can simulate how a product will perform under different loads or temperatures. This can help to identify any potential issues before the product is manufactured, saving time and money in the long run on prototype waste.
You save time and money on production runs of components made from materials such as steel or plastic resin molds. There is no worrying about unexpected costs due to mistakes made during manufacturing process because of pre-printing simulation with Creo. Without simulation, there could be overproduction waste due poor quality control measures and lack of environmental testing.
Another useful feature of PTC Creo is its collaboration tools. With this software, multiple users can work on the same model simultaneously. This can be especially helpful for large design projects, where different teams may be responsible for different aspects of the design.
So, who uses PTC Creo?
As we mentioned earlier, it’s used in a wide range of industries. For example, automotive designers may use it to create models for car parts or assemblies. Aerospace engineers may use it to design aircraft components. And manufacturers may use it to create models of production equipment.
The PTC Creo User Interface
The user interface is where you’ll spend most of your time in PTC Creo. It’s made up of four main sections: Design Tools, 3D Model Creation, Drag-and-Drop Feature and the Model Browser.
The Design Tools section is where you can access all the tools needed for creating your models and assemblies. These include sketching tools for drawing 2D sketches on planes or surfaces; editing tools such as move, copy/paste and rotate; drawing aids like grids; dimensioning tools that let you add dimensions to your designs; assembly creation options that allow users to create assemblies from parts imported into Creo Elements/Pro by means of an external CAD system (such as AutoCAD) or built within Creo Elements/Pro itself; plus many more features!
Support Resources
Tutorials:
PTC has a library of tutorials for all levels, from beginner to advanced. The videos are short and easy to follow, so you can learn the basics in no time.
Documentation:
If you need more detailed information or want to dive into the details of your project, there’s plenty of documentation available on EAC’s website. You can search through the Creo Help Center or look at specific guides that cover topics like creating parts or assemblies in Creo Parametric 3D CAD software.
Creo Experts:
If you have questions about how something works in Creo, ask them here! Our PTC Creo experts are ready to help with any questions, issues or if you want to know how you can optimize your usage of the CAD program.
Conclusion
Creo is a powerful, flexible CAD/CAM software package. It’s used by manufacturers across a variety of industries to create parts and assemblies that are accurate, efficient and cost-effective.
Creo offers an extensive range of capabilities for product development teams:
Conceptualize your ideas with intuitive 3D modeling tools that help you quickly visualize your designs before building them in the virtual world.
Use parametric design capabilities to create variations on existing models so you can test different options quickly and easily without having to start from scratch each time (and potentially waste time).
Create fully functional prototypes using built-in simulation tools that allow you to see how parts will function together before they’re even built!
Connect with one of our experts to see where Creo could positively impact your business processes. If you’re looking to learn more, check out how Creo helped Merrick and the race to space.
Digital transformation has become a buzzword in recent years, and for good reason. Companies that embrace digital technologies are more likely to stay ahead of the curve, differentiate themselves in the marketplace, and meet the evolving needs of their customers.
The benefits of digital transformation can be far-reaching, from improved customer experience to cost savings and increased efficiency.
In this blog, we will explore the various benefits of digital transformation, and why it is essential for companies to embrace this trend in order to remain competitive in the digital age.
What is Digital Transformation?
Digital transformation is a term used to describe the process of transforming an organization’s business model and operations through the use of digital technologies. It’s important because it can help you stay ahead of your competition, improve customer experience and attract new customers.
The benefits of digital transformation include:
- Improved customer experience: Digital transformation can help you better understand and meet the needs of your customers. With the use of data analytics and other digital tools, you can gather insights into customer behavior and preferences, and tailor your products and services accordingly.
- Increased efficiency and productivity: Digital transformation can automate many processes, reducing manual labor and freeing up staff to focus on higher-value tasks. This can lead to increased efficiency and productivity across your organization.
- Competitive advantage: By embracing digital technologies, you can stay ahead of your competitors and differentiate yourself in the marketplace. This can help you attract new customers and retain existing ones.
- Cost savings: Digital transformation can help you reduce costs by streamlining processes and eliminating unnecessary steps. This can lead to significant savings over time.
- Innovation: Digital transformation can open up new opportunities for innovation and growth. By embracing new technologies and ways of working, you can develop new products and services that better meet the needs of your customers.
See how JR Automation saved seven figures with embarking on their digital transformation journey:
Creating a Digital Transformation Roadmap
The first step to creating a digital transformation roadmap is to identify the scope of your transformation. What are you trying to achieve? What are the goals and objectives of your business? How will you measure success?
Once this has been determined, it’s time to set up a timeline for achieving those goals.
Once these steps have been completed, it’s time for action! You should now have a clear idea of what needs changing within your organization and how long it will take before those changes become visible.
Building a Digital Transformation Team
When you’re building your digital transformation team, it’s important to define roles and responsibilities. You’ll want to make sure that everyone understands their role in the process and what they are expected to do. For example, if someone is responsible for monitoring the performance of shop floor machines, they should know what the ideal OEE is of each machine, how they are going to collect that data, and how they are going to distribute it to enterprise decision makers.
It’s also important that you select team members who have complementary skillsets and experience levels. If one person has extensive knowledge of augmented reality while another knows nothing about it at all, this could lead to problems down the line when it comes time for them both to collaborate on projects together – and no one wants that!
Finally, creating a culture where collaboration happens naturally between team members will help ensure successful outcomes throughout your digital transformation project(s).
Adopting the Right Technology
The first step in digital transformation is choosing the right technology. You’ll want to consider:
Software: What are your current needs and how will they change over time? Will you need additional features or functionality?
Hardware: Do you have enough computing power and storage space for all of your data, or does it need to be scaled up or down depending on usage patterns at different times of day/year/etc.? Do you have sensors to track data that you need for production insight?
Tools: What tools do developers use to build applications on top of this platform (e.g., Creo vs. Solidworks)? How easy is it for them to integrate their code with existing systems like databases and messaging queues? Are there any security issues with using these tools – and if so, how can they be mitigated by using another tool instead (e.g., switching from MySQL database server software to Microsoft Azure).
Developing a Digital Transformation Strategy
The first step to developing a digital transformation strategy is to define the scope of the project. What are you trying to accomplish? What are your objectives, and how will you measure success?
These questions can help guide your organization through its transformation journey by setting realistic goals for both short-term wins and long-term gains.
Once you’ve defined what needs changing, it’s time for step two: defining how those changes will happen. This involves creating an action plan that includes timelines for each phase of implementation as well as resources required for each stage (e.g., time from IT staff).
Some companies may choose to tackle multiple projects simultaneously; others might choose only one area at a time depending on their resources available in terms of money/manpower/etcetera).
EAC Assessments help companies answer all those questions and how to get where they want to be.
Implementing the Digital Transformation Plan
Develop a timeline. The first step in implementing your digital transformation plan is to develop a timeline with milestones that will help you track progress.
Set goals and objectives for each milestone. Once you’ve established your milestones, it’s time to set goals and objectives for each one of them so that everyone involved knows exactly what needs to be done at any given time during the project.
Track progress regularly by reviewing dashboards or reports generated from data collected during testing phases of development projects (if applicable). It’s important not only for managers but also employees on lower levels within organizations who may not have access
Monitoring and Evaluating Performance
Monitoring and measuring performance is an important part of the digital transformation process. It allows you to identify areas where you are successful, and areas that need improvement.
Monitoring can be done using a variety of tools, including:
Data Analytics Dashboards (e.g., Thingworx Analytics)
Real-time Data Share (e.g., Windchill, EAC Productivity Apps)
Digital Twin Performance (e.g., Augmented Reality)
Adapting and Adjusting the Plan
As you progress through your digital transformation, there will be changes in the market that you need to respond to.
If a competitor introduces a new product or service, or if something happens in the industry at large, it may change how you approach your own strategy.
You might also find that your goals and objectives have changed since they were first set out; perhaps there’s been an increase in customer demand for something specific that wasn’t previously considered important enough for inclusion on the list.
The best way to handle these situations is by reviewing them regularly with other members of your team – and making sure everyone has input into decisions about how best to adjust course as needed.
Communicating the Benefits of Digital Transformation
In order to communicate the benefits of digital transformation, it’s important to understand who your stakeholders are and what they want.
If you’re working in an organization with a large number of stakeholders (such as a government agency), then there may be multiple groups that need convincing. For example:
The board wants to see results from their investment in IT infrastructure. They’ll likely be interested in metrics such as ROI and cost savings.
Executives want quick wins that will help them achieve their goals, but they also need proof that this new approach will work before they can commit time and resources to implementing it throughout the organization.
Employees want something tangible they can hold onto when explaining why this change is important for them personally (and why it matters).
Conclusion
Digital transformation is a powerful tool that can help you achieve your business goals. It’s important to remember that digital transformation is not just about implementing new technologies, but also about changing how you work and think as an organization.
Digital transformation requires commitment from everyone involved in the process – from the C-suite down through every level of your organization.
To be successful, it must be an ongoing effort rather than a one-time project or initiative. You will need to continuously innovate and improve what you’re doing if you want to stay ahead of competitors who are also pursuing digital transformation strategies.
In conclusion, digital transformation is becoming increasingly essential for companies to stay competitive and meet the needs of their customers in the digital age. However, the process of digital transformation can be complex and challenging, which is why EAC assessments can be extremely helpful.
By conducting an assessment of your organization’s current digital capabilities and identifying areas for improvement, you can develop a roadmap for digital transformation that is tailored to your specific needs and goals.
EAC assessments can help you identify gaps in your digital capabilities, streamline your processes, and develop new products and services that better meet the needs of your customers. By embracing digital transformation and leveraging the expertise of EAC assessors, you can position your company for success in the digital age.