In today’s world, it’s not uncommon for companies to be rich in data but poor in insights. Despite having access to a wealth of information, organizations struggle to properly analyze performance and drive transformational improvements. This is where ThingWorx Digital Performance Management (DPM) steps in to bridge the gap.

 

This week in your factory, you’ve applied maximum effort, pouring countless hours into perfecting your product. As the work week ends, a feeling of slight disappointment remains.

 

Could you have accomplished more? Where did it go awry? You may not be able to find the answers on your own, leaving your factory inefficient and operating below its full potential.

 

If this is you, look no further. With the capabilities of Thingworx Digital Performance Management, you will unleash an untapped potential of data and boost your manufacturing processes.

 

What is Digital Performance Management?

ThingWorx Digital Performance Management (DPM) is a cutting-edge solution designed to help organizations identify, prioritize, and improve production issues.

 

By capturing lost production hours and their causes, DPM indicates where to focus for the most critical impact. Also, it optimizes the finite time available, allowing organizations to reclaim lost hours and increase effective time by 20% or more. Thus, directly impacting the bottom line.

 

How Does DPM Work?

Consider a manufacturing facility that can produce one unit per hour. In a week with 88 hours worked, the facility manages to manufacture only 44 units. Let’s say 12 hours are lost through planned downtime and 14 hours are lost due to changeovers.

 

That leaves about 18 hours unaccounted for. Where did those come from? With ThingWorx DPM, you can quickly identify issues, and why they happened, and then take appropriate actions to fix them.

 

Moreover, DPM calculates and analyzes discrepancies, providing valuable insights to improve productivity. DPM is a comprehensive toolset that propels organizations towards peak performance by tracking performance, conducting in-depth analysis, planning, and validating improvements.

 

The Production Dashboard

One feature included with DPM is the Production Dashboard. The visual dashboard is a crucial tool for supervising shift performance and gathering vital data to inform reporting and analysis. It is designed for supervisors and line managers to track productivity across various production lines.

 

Some key features of the Production Dashboard include:

  • Provides insights into shift progress at the production block level

  • Allows for automated and manual data entry, including reason codes to capture all losses

  • And offers a simplified interface to minimize disruption

 

Bottleneck Analysis

The Bottleneck Analysis tool is designed to automatically detect and monitor the most significant bottlenecks in your factory, providing valuable analysis and insights into OEE and OLE.

 

One of the challenges that customers face is a lack of visibility into bottlenecks, which leads to a disconnect between continuous improvement efforts and their impact on the business. However, bottlenecks are often dynamic and complex.

 

To address these challenges, DPM offers key capabilities to help identify and resolve:

  • Automatically identifying and tracking bottlenecks.

  • Systematic identification of the top constraints, which can significantly increase factory efficiency by 5-20%.

  • Management of the dynamic nature of competing bottlenecks.

 

Overall, DPM works relentlessly, making up for lost time by tracing the root cause of issues and providing precise remedies to ensure smooth and efficient functionality. Consider DPM an invaluable employee, working tirelessly around the clock without additional overtime costs!

 

Accelerate Problem Solving with DPM

DPM’s capabilities extend beyond surface-level analysis. By combining Pareto analysis and time loss analytics, DPM users can uncover and address a significant percentage of production problems.

 

Additionally, with the further integration of AI and machine learning, DPM streamlines the identification of patterns in data, resulting in faster problem-solving and decision-making.

 

For instance, a DPM user noticed quality losses between 3 p.m. and 4 p.m. Thanks to DPM’s automated analysis, the manufacturing team quickly determined that the issue was caused by a glare from the sunset, making the inspection camera unreliable.

 

All in all, DPM helped accelerate the problem-solving process saving valuable time and resources.

 

Reap the Benefits

Digital Performance Management is as remarkable as it sounds. DPM holds the secret to your production improvements and is ready to share them with you. Discover the plethora of benefits that are tied to DPM:

 

  • Standardized Measurement: DPM provides a consistent and standardized approach to measure losses, ensuring accurate evaluation of bottlenecks, and their impact on performance.

 

  • Efficient Root Cause Analysis: Leveraging AI technology, DPM identifies the root causes of bottlenecks and facilitates their permanent resolution, eliminating recurring issues.

 

  • Automated Problem Identification: DPM’s powerful AI algorithms automate the process of surfacing common issues, exponentially reducing the time spent on problem-solving.

 

  • Real-time Insights: What once took months to identify critical insights now becomes easily accessible through DPM’s intuitive interface, providing teams with immediate access to actionable insights.

 

Get Started with DPM Today!

In conclusion, if you want to revolutionize your performance management and take your organization to new heights, it’s time to embrace Digital Performance Management.

 

Remember, in today’s fast-paced world, those who leverage technology to gain insights and make data-driven decisions are the ones who thrive.

 

Are you ready to unlock the true potential of your organization with Digital Performance Management? Talk with an expert now to take your first steps toward success.

 

I’m sure at least once in your life you’ve heard the saying, ‘Work smarter, not harder.’ But what a cliche, right?! Well, for those of you managing your Bill of Materials (BOMs) in Excel, it’s time to step away from the cell block prison (pun intended).

In this article, we’re going to break down what it actually means to revitalize your BOM strategy with the Digital Thread to start seeing the results you want.

 

What Is The Digital Thread?

 

First of all, let’s start with the basics. The Digital Thread is a term used to describe the seamless flow of information throughout the manufacturing process. From design and engineering to production and after-sales support. It provides a way to connect all the data and information generated at different stages and from systems of the product lifecycle.

 

Generally, the Digital Thread provides value by enabling better visibility and control of any processes that require or produce product data. It enables manufacturers to collaborate more effectively, automate and optimize workflows, and quickly respond to changes. All while adjusting quickly to customer needs. 

 

Bill of Materials (BOM)

 

Next, let’s break down the concept of a Bill of Materials. A complete Bill of Materials (BoM) list usually contains all of the parts and components needed to create or manufacture an end product. You might think of a BoM as a recipe ingredient list. The information about each part can include details such as part names, part numbers, quantity required, and cost per unit. Not to mention, BoMs contain other relevant part details such as material type, color, or size if applicable; supplier information; serial numbers, etc.

By consolidating and organizing all the pertinent information product information, the BoM becomes a centralized resource. A critical resource that facilitates the manufacturing processes of specified products.

 

Ultimately, the goal of the BoM is to help track inventory and verify missing parts during assembly. Equally as important, BoMs are critical to support a healthy supply chain, as well as help with purchasing decisions and more.

 

The Digital Thread and Bill of Materials Working Together

 

Balancing a plethora of product information – it’s no surprise, the best BoM management strategy used within the industry does not leverage solely Microsoft Excel. Nor does it rely upon one Enterprise resource planning (ERP) system. Instead it works to unite data from multiple systems into a single source of truth. 

 

Sounds great doesn’t it? But, if you’re like most – your product data lives all over the place in different systems from different departments. This situation tends to create data siloes resulting in time-consuming manual tasks using outdated operational processes. Generally, these are some of the biggest problems that inhibit manufacturers from achieving their business initiatives. 

 

Oftentimes, during our EAC Assessments, we hear multiple teams across the enterprise and different management levels are frustrated by broken processes. In short, there is a lack of key information employees need to do their jobs right, at the time they need it most.

 

Meanwhile, the digital thread uses advanced technology (such as product lifecycle management systems as well as the Internet of Things) to connect critical disparate processes. This, in turn, helps minimize manual tasks, and breaks down data siloes. Implementing the digital thread to your BoM strategy creates a major impact for all stakeholders involved. For instance, design teams, engineers, manufacturing, assembly, operations, finance, purchasing, and even marketing. 

 

How The Digital Thread Supports Engineering

 

Furthermore, the Digital Thread plays a crucial role in supporting engineering and bill of materials (BOM) management by providing seamless connectivity and accessibility to relevant data throughout the product lifecycle. Here’s how the digital thread benefits these areas:

 

1. Engineering Collaboration

Firstly, the digital thread allows engineers to collaborate effectively by providing a centralized platform for sharing and accessing engineering data. This facilitates cross-functional collaboration, enables real-time communication, and reduces errors or miscommunications during the design and development process.

 

2. Design Consistency

Secondly, the digital thread ensures design consistency by maintaining a single source of truth for engineering data. Changes made in the design phase are automatically propagated throughout the digital thread, ensuring that all related documents, models, and specifications remain synchronized.

 

3. BOM Accuracy and Visibility

The digital thread integrates BOM management, configuration management, and BoM transformation capabilities. This enables accurate and up-to-date BOMs, as the data will automatically reflect changes. Additionally, it provides real-time visibility into the BoM status, including component availability, sourcing information, and cost implications.

 

4. Change Management

Next, the digital thread streamlines change management processes. By automating change notifications, approvals, and tracking. Essentially, it ensures that engineering changes are effectively communicated, documented, and implemented across the relevant stages of the product lifecycle, minimizing errors and delays.

 

5. Manufacturing Process Optimization

By connecting engineering data with manufacturing process management, the digital thread enables better coordination and optimization of production processes. By in large, system and data integration allows for improved manufacturing planning, efficient resource allocation, and reduced lead times.

 

6. Enhanced Visualization and Analysis

Another example includes leveraging augmented reality (AR) design sharing to provide visual representations of designs. In detail, enabling stakeholders to view and analyze products in a virtual environment. It’s recommended to use AR to enhance design reviews, simplify communication, and facilitate better decision-making.

 

Overall, the digital thread improves engineering and BoM management. Markedly, by streamlining processes, enhancing collaboration, ensuring data consistency, and providing visibility across the product lifecycle. It promotes efficiency, accuracy, and agility in engineering and BoM-related activities. Leading to improved product quality and faster time to market in the long run.

 

How A Digital Thread BoM Strategy Streamlines Manufacturing

 

Simultaneously, the digital thread plays a significant role in enhancing the bill of materials (BoM) management for manufacturing, assembly, and quality control processes. In sum, here’s how the digital thread benefits these areas:

 

1. Manufacturing and Assembly Planning

The digital thread enables seamless integration between the BoM and manufacturing planning systems. It provides real-time visibility into the BoM, ensuring accurate and up-to-date information for manufacturing and assembly operations. This allows for efficient production planning, optimized resource allocation, and improved scheduling in all.

 

2. Supply Chain Integration

By connecting the BoM with supply chain management systems, the digital thread enhances supply chain visibility and collaboration. It enables better coordination with suppliers, accurate tracking of component availability, and improved procurement processes. As a result, it minimizes the risk of production delays and ensures timely delivery of materials.

 

3. Work Instructions and Assembly Guidance

Thirdly, the digital thread facilitates the creation and dissemination of detailed work instructions and assembly guidance based on the BoM data. This ensures that assembly operators have access to accurate and step-by-step instructions, reducing errors and improving productivity on the shop floor.

 

4. Quality Control and Traceability

The digital thread enables better quality control and traceability throughout the manufacturing process. By integrating the BoM with quality management systems, it ensures that quality requirements and specifications are adhered to during production. It also enables traceability of components and materials, making it easier to identify and address any quality issues or recalls.

 

5. Continuous Improvement and Feedback Loop

Additionally, the digital thread supports continuous improvement initiatives by capturing data and feedback from manufacturing and quality control processes. It enables the analysis of production data, identifies areas for improvement, and facilitates data-driven decision-making to enhance manufacturing efficiency and product quality.

 

6. Post-Market Monitoring

Finally, the digital thread extends beyond the manufacturing phase to support post-market monitoring and quality assurance. Integrating BoM data with field service management systems and customer feedback enables organizations to identify and address product issues, initiate product improvements, and provide timely support and maintenance.

 

All in all, the digital thread enhances BoM management for manufacturing and assembly processes by ensuring accurate and up-to-date information, facilitating supply chain integration, enabling effective work instructions, improving quality control, supporting continuous improvement efforts, and enabling post-market monitoring. Concurrently, it streamlines operations, improves product quality, and enhances customer satisfaction.

 

The Polaris Story

 

Polaris utilized PTC Windchill, an advanced product lifecycle management system, to transform their Bill of Materials into a reliable new business model backbone. As a result, it allowed them to create a connected enterprise.

 

Windchill PLM combines the digital thread framework with a maximized BoM and change management strategy. This powerful product lifecycle management platform organizes all information associated with the development of its products, allowing every stakeholder to access the latest up-to-date information in a dynamic format.

 

Once it was clear to Polaris that they had outgrown certain tools and processes, they coordinated and synchronized a digital thread of data throughout the enterprise by leveraging PTC Windchill.

 

As of today, Polaris’ Windchill PLM system enables them to manage and organize the bill of materials (BoM) and implemented configuration management practices. This helped transform their BoMs as needed, effectively managing changes, overseeing manufacturing processes, and utilizing augmented reality (AR) design-sharing capabilities.

 

By orchestrating these elements, the digital thread ensured seamless connectivity and flow of information across different stages and departments within Polaris. This enabled improved collaboration, streamlined workflows, effective change control, and enhanced manufacturing processes. On top of giving the ability to share and visualize designs using AR technology.

 

Read the Polaris BoM Digital Thread Case Study

Conclusion

To sum it up, it’s time to put Excel away and start working smarter, not harder. Successful BoM management derives from a single source of truth throughout the enterprise in regard to all the data contained in the Bill of Materials. The Digital Thread allows for the seamless automated flow of the BoM information to create a truly connected enterprise, working in sync along every step of the manufacturing process.

Not sure where to get started? We created our EAC Assessments to help. Click here to learn more or have a conversation with our experts.

Woman working at a desk with an iPad

 

Attention engineers! There’s an easier way to conduct Tolerance Analysis for your CAD designs.

Transforming CAD designs into real and tangible parts is not only rewarding on a personal level but also professionally fulfilling. It combines creativity, problem-solving, and hands-on experience, all culminating in the sense of accomplishment that comes from creating something real from an abstract concept.

 

However, as you already know, physical parts deviate from the idealized representation (the design model) due to many different challenges and manufacturing constraints. Tolerance analysis involves assessing the impact of variations in dimensions, geometries, and other parameters on the final product’s performance and functionality. By utilizing Tolerance Analysis, designers ensure proper fit and alignment of the product components.

 

Improve Quality & Design Innovation

If the goal is to improve quality and design innovation, enable your engineers to perform comprehensive tolerance stack-up analysis. Traditionally this process is a massive pain i.e. repetitive trial-and-error tasks and tedious testing. This part of the design process can be frustrating and often slows down design teams. However, it doesn’t have to be this way!

 

The PTC Creo EZ Tolerance Analysis Extension is a dynamic computer-aided engineering (CAE) tool powered by leading Sigmetrix technology. This extension helps designers by creating a faster, more intuitive workflow to assess the impact of dimensional specifications on your product designs before prototypes or production.

 

The software provides algorithms to help engineers identify the optimal tolerance values that meet the design objectives while considering various constraints. This aids in making informed decisions and reducing the time spent on manual analysis and evaluations.

 

By considering these variations even earlier in the design process, engineers can make more informed decisions to ensure that the final product will perform as intended. Cheers to reinforcing Closed Loop Manufacturing!

 

The Positive Business Outcomes of Using EZ Tolerance Analysis

 

Below is a high-level overview of the positive business outcomes this PTC solution proves to provide for manufacturing companies:

  • Speed time to market
  • Mitigate risk
  • Improve productivity
  • Reduce costs by reducing rework and scrap

How EZ Tolerance Analysis Makes Your Workflow Less Stressful

Intuitive User Interface

Achieve your goals efficiently with minimal frustration. The EZ Tolerance Analysis extension’s user-friendly UI enables you to maintain a flow and continue work without disruptions as it is integrated into the familiar Creo environment. This mitigates any steep learning curve and helps with productivity to get new users up and running quickly and confidently. If you need help getting set up with the technology, give us a shout. We can help maximize your workforce capabilities and your technology investment.

 

Complexity Management

The EZ Tolerance Analysis software provides tools and features to manage complex designs efficiently. It offers intuitive interfaces and workflows that simplify processes regarding defining tolerance features. The extension extracts relevant information directly from your CAD models, reducing manual effort and potential errors. Visual dashboards: say goodbye to tedious spreadsheets.

 

Problem Identification and Resolution

No more flying blind, EZ Tolerance Analysis provides visualizations and statistical outputs that enable engineers to identify potential issues and bottlenecks in the assembly or system. After pinpointing problematic areas, engineers can devise effective solutions – such as adjusting tolerances, redesigning components, or modifying manufacturing processes.

 

Quick Iterative Design Refinement

Perform your “what-if” scenarios quickly and accurately. Using Sigmetrix technology, get immediate feedback on the effects of tolerance adjustments and trade-off analysis. Engineers can quickly refine and optimize tolerances based on the analysis results, reducing the time required for iterations.

Improved Collaboration

The software facilitates collaboration among multidisciplinary teams involved in the design and manufacturing process. Easily share tolerance analysis data, models, and reports via HTML reports to ensure everyone comprehensively understands design intent and can make informed decisions. Visual and data-backed reports can be shared with the shop floor, suppliers, or other stakeholders, facilitating effective communication and collaboration. Providing clear documentation helps to minimize misunderstandings and costly mistakes, saving time and effort in the design and manufacturing process.

Standards and Specifications Compliance

Ensure compliance with built-in libraries of industry standards and specifications. Engineers can access these libraries to ensure that defined tolerances comply with the relevant standards. Ensure compliance with ASME and ISO standards for your designs and create products that align precisely with customer requirements while operating within acceptable tolerances. This feature helps streamline the process of defining tolerance features by providing pre-defined templates and guidelines that match industry requirements.

Overall, EZ Tolerance Analysis empowers engineers to make data-driven decisions, reduce uncertainty, and enhance the efficiency and quality of the design and manufacturing process. It aids in achieving design objectives, meeting customer requirements, and delivering reliable and cost-effective products.

Back-Up Your cad Designs with Stack-Up Analysis

The technology performs comprehensive tolerance stack-up analysis by applying two methods for increased accuracy and precision- worst-case analysis and statistical analysis.

Worst-Case Analysis: Worst-case analysis, commonly employed for critical components, examines the scenario where each component in the stack-up attains its maximum acceptable measurement.

Statistical Analysis: On the other hand, statistical analysis utilizes statistical distribution models to represent the variation of each component. These distributions are then combined to predict the overall distribution of the assembly measurement.

 

 

Related Technologies To Use With Tolerance Analysis

 

Combine Tolerance Analysis with Geometric Dimensioning and Tolerancing (GD&T) to ensure your designs comply with ASME and ISO standards. Or take your designs even further to contain all the data needed to define the product with model-based definition (MBD). With MBD, your model becomes the source authority across the enterprise. The outcome is shorter product development cycles, reduced costs, and enhanced product quality.

 

PTC continues its investments in enhancing simulation-driven design and generative design with the new Creo 10. Some new features include Rotational Symmetry, Mass Point Constraints, and Remote Loads. Additionally, Creo Simulation Live now includes Contact Simulation options and improved options for fluid and structural results. Creo Flow Analysis and Creo Simulation now have better animation and multibody support. 

 

For more Simulation and Analysis, we also recommend PTC’s Creo Simulation Advanced powered by Ansys technology. The brand-new Creo Ansys Simulation Advanced analyzes nonlinear contact and materials, with combined thermal and structural analysis. For more information about the latest release of Creo 10 check out the blog here.

 

Creo Parametric is a powerful computer-aided design (CAD) software that has been helping engineers and designers bring their ideas to life for over 30 years. With the release of Creo 10, users can expect a number of new features and improvements in productivity, designs, and more!

What’s New in Creo 10

Discover Creo 10’s newest improvements and enhancements.

User Interface Enhancements

PTC has made a big splash with the release of Creo 10, including an enhanced user interface.

Split & Trim Tool

Use this tool to quickly and easily split or trim a model, making it painless to work with and modify your model. Additionally, the ability to propagate appearances and references during Boolean operations makes it easier to maintain consistency throughout a project.

Stretch Tool in Warp

Utilize the Stretch Tool to select defined references to stretch models, making it easier to create complex shapes and designs. Users now have the ability to select Datum Planes, Points, Axis, Coordinate Systems, Surfaces, Curves, Facets, and more.

Freestyle and Style Tools

Both tools are enhanced with Rotational Symmetry and Smooth Normal Connection, making it easier to create organic shapes and designs. These tools are perfect for designers who want to create complex, freeform shapes that are difficult to create with traditional CAD tools.

The Model Tree

Creo’s Model Tree tool has been improved, making it easier to restructure and reorder assemblies to reduce confusion and improve the management of complex projects.

New Pattern Parameters

Finally, the pattern capability in Creo 10 enables users to drive pattern member count for nested patterns. Create complex patterns quickly and easily, saving you time and improving overall productivity.

Optimize Your Design

Take your design process to the next level with Creo 10’s newest additions.

Composites

Designing composite materials has never been easier with the new features in Creo. The software now offers a broad set of functionalities for defining ply layup, ply sections, transitions, and ply order. This allows you to create a resulting solid geometry and inner mold line (IML) quilt that meets your exact specifications.

In addition, Creo’s new Splicing and Darting operations, makes it easier to create complex composite designs. Once a design is complete, you can automatically generate a complete plybook documentation of the final layup sequence.

With new composite design features in Creo 10, you can easily create high-quality composite materials that meet your needs and specifications. Whether you’re designing for aerospace, automotive, or any other industry, Creo’s composite design tools can help you create the perfect product.

Electrification

Creo 10 presents new features that streamline and enhance the process of designing for electrification.

Split/Merge Harness Tool for Cabling

One of the most significant additions is the Split/Merge Harness Tool for Cabling. This tool allows users to split a harness into two separate pieces and later merge them back together. This feature is particularly useful when working on complex designs that require multiple harnesses.

Simultaneous Harness Design

Another key feature of Creo 10 is the ability for multiple users to work on the same harness design simultaneously. This collaborative design approach saves time and ensures that everyone is on the same page. The application-centric tree is another useful addition, which provides three different views, including Cables, Bundles, and Connectivity, to make it easier to navigate.

New ECAD Capabilities

Creo 10 includes new ECAD capabilities, such as paste masks and hole parameters. These features make it easier to create accurate designs that meet the specific needs of each project with greater precision and accuracy.

Ergonomics

Creo 10 optimizes and simplifies the design process for ergonomics.

The Visual Field

Perform Reflection Analysis to analyze the reflective properties of objects in the environment and how they impact the user’s visual experience. The reflective object orientation can be controlled by adding a rotation value around one or two axes, giving you greater control over the design process.

Creo Manikin

Another key feature of Creo 10 is the Manikin, which now support multiple reach envelopes, including the index and middle finger, thumb, and center of the palm. Creo Manikin allows designers to create more accurate models of human movement and reach, making it easier to design products that are comfortable and easy to use. Additionally, the Manikin libraries are now stored as inseparable assemblies to provide better management and user access.

Enhancing Model-Based Definition and Implementing the Digital Thread

Creo 10 introduces significant updates to Model-Based Definition (MBD) and Digital Thread capabilities, to better create, manage and access real-time product data across the entire product lifecycle.

Enhanced 3D Model Annotations

One of the most significant additions is the ability for users to relate symbols or surface finishes to other annotations in the 3D model. This feature allows designers to create more accurate and detailed models, making it easier to communicate design intent to other stakeholders and downstream activities.

Creo 10 adds the ability for annotations to inherit their annotation plane from the parent during placement. This feature ensures that annotations are placed correctly and in the right location, saving time and improving accuracy. Additionally, any movement of the related parent annotation would also be applied to related symbols, behaving as a group when being assigned to other combination states.

GD&T Advisor Updates

Creo 10 includes improvements to GD&T semantic behaviors, including general profile tolerances and enhanced compliance with detailing standards. These changes make it easier for designers to create accurate and detailed models, ensuring that the design intent is communicated effectively throughout the product lifecycle.

Furthermore, any changes made to GD&T annotations will automatically update the corresponding semantic references of general profile tolerance. Additionally, Creo 10 now supports straightness and profile of Line Geometrical Characteristics for ISO GPS models. Create more accurate and detailed models, ensuring that the design intent is communicated effectively.

Advanced Simulation and Optimization Capabilities

Creo 10 presents a range of new features that enhance and streamline the process of simulation and optimization.

Support for Non-Linear Materials

This includes Neo-Hookean hyperplasticity, linear orthotropic elasticity, and bi-linear plasticity.

Combined Thermal & Structural Analysis

Another key feature is the support for combined thermal and structural analysis. Enable your designers to easily simulate how a product will perform under both thermal and mechanical loads, ensuring that the design is optimized for real-world conditions.

Support for non-linear contact, including new contact types such as frictional and rough, helps to create more accurate simulations of real-world contact.

Expanded Contact Simulation Options

PTC included improvements to Creo Simulation Live, to improve result options for fluids and structures. Furthermore, Creo Flow Analysis and Creo Simulate now have better Animation and Multi-Body Support.

Rotational Symmetry

Allows designers to create more accurate simulations of rotational components.

Point Mass & Remote Loads

Finally, Creo 10 introduces the ability to add Point Mass and Remote Loads to create more accurate simulations of real-world loads.

Creo 10: Additive and Subtractive Manufacturing

With Creo 10’s latest features, manufacturing processes are now more efficient and effortless. One of the most significant additions is the support for additive manufacturing.

New Lattice Types

This enables your designers to create new beam-based lattice types, including rhombic, rhombic+diamond, dodecahedron, and elongated dodecahedron. For formula-driven lattices, Creo 10 supports simulation-based variable wall thickness and highly efficient I-graph-wrapped (IWP) lattice cell. Additionally, Creo 10 supports Auxetic Cells Structures for 3D printing. Auxetic Cell Lattices produce geometry that exhibit a negative Poisson ratio.

High-Speed Milling

High-Speed Milling supports barrel tools for both wall and floor 5-axis finish, reducing tool path time and improving surface finish quality. Additional control for CUTCOM and clearance has been added to Area Turning, making it easier to create accurate and efficient toolpaths for subtractive manufacturing processes.

Get started with Creo 10 Today

Creo 10 is an exciting new release from PTC that brings a plethora of new features to the design table. Whether you’re a designer or an engineer, Creo 10 is a game-changing tool that will help you create complex shapes and designs, manage projects, and improve productivity for more innovative products.

To learn more about how Creo 10 can positively impact your business or to experience the new features first-hand, book a free demo now.

Creo file of part being designed

PTC Creo: Explained

PTC Creo is a powerful 3D modeling and simulation software that helps engineers and designers to create virtual prototypes of their products. The software is used in many industries, such as aerospace, automotive, medical devices, consumer electronics and more.
PTC Creo provides users with a wide range of features including:

  • Modeling capabilities for creating complex shapes using parametric geometry or direct modeling tools

  • Test your designs before they’re manufactured

  • An integrated environment where you can work on multiple projects simultaneously without having to switch between different programs

The Benefits of PTC Creo

This powerful 3D CAD software offers advanced tools for product development, including:

  • Cost-effectiveness – The ability to create high quality products at lower costs through an improved design process. This effective simulation tool saves you money on

  • Improved accuracy – The ability to create accurate designs faster with less manual intervention.

  • Speed of design – A streamlined workflow enables you to quickly move from concept to reality by automating repetitive tasks so you can focus on what matters most – your ideas!

Creo Parametric CAD design with dimensions

Creo Parametric

One of the key features of PTC Creo is its parametric design capabilities. This means that users can create models that are based on a set of parameters, such as dimensions or material properties. If any of these parameters change, the model will automatically update to reflect the new values. This can save a lot of time and effort in the design process, as designers don’t have to manually update every aspect of the model.

Creo Simulation

PTC Creo also includes a range of simulation tools using Creo Simulate or Simulate Live, which allow designers to test their models under various conditions. For example, they can simulate how a product will perform under different loads or temperatures. This can help to identify any potential issues before the product is manufactured, saving time and money in the long run on prototype waste.

You save time and money on production runs of components made from materials such as steel or plastic resin molds. There is no worrying about unexpected costs due to mistakes made during manufacturing process because of pre-printing simulation with Creo. Without simulation, there could be overproduction waste due poor quality control measures and lack of environmental testing.

Another useful feature of PTC Creo is its collaboration tools. With this software, multiple users can work on the same model simultaneously. This can be especially helpful for large design projects, where different teams may be responsible for different aspects of the design.

So, who uses PTC Creo?

As we mentioned earlier, it’s used in a wide range of industries. For example, automotive designers may use it to create models for car parts or assemblies. Aerospace engineers may use it to design aircraft components. And manufacturers may use it to create models of production equipment.

The PTC Creo User Interface

The user interface is where you’ll spend most of your time in PTC Creo. It’s made up of four main sections: Design Tools, 3D Model Creation, Drag-and-Drop Feature and the Model Browser.
The Design Tools section is where you can access all the tools needed for creating your models and assemblies. These include sketching tools for drawing 2D sketches on planes or surfaces; editing tools such as move, copy/paste and rotate; drawing aids like grids; dimensioning tools that let you add dimensions to your designs; assembly creation options that allow users to create assemblies from parts imported into Creo Elements/Pro by means of an external CAD system (such as AutoCAD) or built within Creo Elements/Pro itself; plus many more features!

Support Resources

Tutorials:
PTC has a library of tutorials for all levels, from beginner to advanced. The videos are short and easy to follow, so you can learn the basics in no time.

Documentation:
If you need more detailed information or want to dive into the details of your project, there’s plenty of documentation available on EAC’s website. You can search through the Creo Help Center or look at specific guides that cover topics like creating parts or assemblies in Creo Parametric 3D CAD software.

Creo Experts:
If you have questions about how something works in Creo, ask them here! Our PTC Creo experts are ready to help with any questions, issues or if you want to know how you can optimize your usage of the CAD program.

Conclusion

Creo is a powerful, flexible CAD/CAM software package. It’s used by manufacturers across a variety of industries to create parts and assemblies that are accurate, efficient and cost-effective.
Creo offers an extensive range of capabilities for product development teams:

  • Conceptualize your ideas with intuitive 3D modeling tools that help you quickly visualize your designs before building them in the virtual world.

  • Use parametric design capabilities to create variations on existing models so you can test different options quickly and easily without having to start from scratch each time (and potentially waste time).

  • Create fully functional prototypes using built-in simulation tools that allow you to see how parts will function together before they’re even built!

Connect with one of our experts to see where Creo could positively impact your business processes. If you’re looking to learn more, check out how Creo helped Merrick and the race to space.